Limited Path Percolation in Complex Networks Eduardo López

Los Alamos Nat. Lab. LA-UR 07-0432

- Outline
 - Motivation. Percolation and its effects.
 - Presentation of new limited path length percolation model
 - Scaling theory of new model and results
 - Targeted percolation, theory and results.
 - Conclusions

References

"Limited path length percolation in complex networks", López, Parshani, Cohen, Carmi and Havlin, Phys. Rev. Lett. (in press). cond-mat/0702691.

Collaborators

Roni Parshani Shai Carmi

Shlomo Havlin Reuven Cohen

Motivation: How to go from Salem to Boston?

Question: How many roads need to be closed before most people cannot get to work?Answer: from Percolation theory

Motivation: What's the problem with percolation?

- Salem-Boston connected with any path!
- Long or short paths OK
- Percolation finds critical percentage p_c of roads needed to keep cities connected.
- Percolation increases path lengths (and time), i.e., smaller
 p⇒longer path.
- There is practical limit to connectivity ⇔ longer paths not useful.

Answer: sometimes percolation accepts useless paths.

Social contact network

- New percolation model applied to complex networks
- •Definition of connection: *i* and *j* are connected if $l'_{ij} \le a l_{ij}$ •Notation:

 $S_a(p)$: Largest cluster size at occupation p, length condition a

- Is there a critical occupation p = p̃_c above which S_a~N?
 Results: New limited path percolation transition
 Scaling theory
- •Find new critical occupation $\tilde{p}_c > p_c$
- •Critical point is now a critical range: $S_a \sim N^{\delta}, \delta = \delta(a, p) \left(p_c$
- •Below and above range, behavior is P_{∞} similar to regular percolation:

$$S_a \sim \log N \left(p < p_c \right)$$
$$S_a \sim N \left(p > \widetilde{p}_c \right)$$

Theory of model networks: Erdős-Rényi

- Developed in the 1960's by Erdős and Rényi. (Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960).
- N nodes and each pair connected with probability ϕ .
- Define k as the degree (number of links of a node), and $\langle k \rangle$ is average number not in the network.

Construction degree of j, $k_i=3$

• Distribution of degree is Poisson-like (exponential) $P(k) = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k}$

Outline of scaling theory for Limited Path Percolation Example: Erdős-Rényi

- Before percolation, typical path length $l \sim \log N/\log \langle k \rangle$
- After percolation, local structure is tree-like, with branching factor $\kappa = p \langle k \rangle + 1$
- Tree approx. $\Rightarrow S_a \sim (\kappa 1)^l = (p < k >)^{a \log N/\log < k >} = N^{\delta}$
- Scaling exponent $0 \le \delta \equiv a(1 + \log p/\log < k) \le 1$
- $\delta \leq 1$ be dist S_a cannot exceed N
- Solving $\delta = 1 \implies \tilde{p}_{q} \log \langle k \rangle^{(1-a)/a}$
- Usual percolation recovered with $a \rightarrow \infty$: $\widetilde{p}_c \xrightarrow{a \rightarrow \infty} p_c = \langle k \rangle^{-1}$

Limited path percolation predicts a larger communication threshold.

Some basic network properties

Erdős-Rényi networks

Scale-free networks

•Narrow range of typical degree

$$\langle k \rangle - \sqrt{\langle k \rangle} \le k \le \langle k \rangle + \sqrt{\langle k \rangle}$$

•Small diameter

 $D \sim \ln N$

•Wide range of typical degree

$$k_{\min} \leq k \leq k_{\min} N^{1/(\lambda-1)}$$

 $(k_{\min} \text{ is minimum degree})$

•Small or ultra-small diameter

 $D \sim \ln(\ln N) [2 < \lambda < 3]$ $D \sim \ln N [\lambda > 3]$

Scaling theory for limited path percolation on scale-free networks
For λ>3:

$$S_a \sim N^{a \left[1 + \log p / \log (\kappa_o - 1)\right]}$$
$$\widetilde{p}_c = (\kappa_o - 1)^{(1-a)/a}$$

• For $2 < \lambda < 3$:

Tree approximation invalid. Networks are ultra-small: $l \sim \log \log N / |\log(\lambda - 2)|$ $l' \sim \log \log P_{\infty} N / |\log(\lambda - 2)|$ Therefore:

$$a = \frac{l'}{l} \sim \frac{\log \log P_{\infty} N}{\log \log N} \xrightarrow[N \to \infty]{} 1$$

Results for $S_a \sim N^{\delta}$ Scale-free

Targeted attacks on scale-free networks

- Scale-free networks have sensitive nodes (hubs) with large k.
- Examples: Airline hubs, central communication nodes, disease super-spreaders.

Model for targeted percolation

p: fraction of lowest degree nodes present.
In targeted percolation (no length)

• In targeted percolation (no length restriction) p_c is large: $p_c=1 \ (\lambda \rightarrow 2)$ p_c close to 1 $(\lambda > 2)$

Network falls apart with few node removals

Question: What happens for limited path percolation?

Scaling theory for limited path targeted percolation on scale-free networks

• For
$$\lambda > 3$$
:
 $S_a \sim N^{a \log(\kappa - 1)/\log(\kappa_o - 1)}$
 $\widetilde{p}_c = \widetilde{p}_c(a, \kappa, \kappa_o)$

• For $2 < \lambda < 3$:

Tree approximation valid again after percolation:

$$S_a \sim (\log N)^{2a\log(\kappa-1)/|\log(\lambda-2)|}$$

Any finite *a* fails to produce transition to linear phase: $\widetilde{p}_c = 1$

Results for $S_a \sim N^{\delta}$ Scale-free targeted removal

Differences in Limited Path Percolation due to network structure and removal method at $p_c \leq p \leq \tilde{p}_c$ Random removal

Scaling function for S_a

•For Erdös-Rényi, and scale-free $\lambda > 3$ with random and targeted removal, there are two phases above and below \tilde{p}_c

•Therefore:

$$S_a \sim c(p) N^{\delta} f\left(\frac{P_{\infty}N}{c(p)N^{\delta}}\right) f(x) \sim \begin{cases} x, & x <<1\\ cnst., & x >>1 \end{cases}$$
$$c(p) \equiv c_o \left[p (\kappa_o -1) + 1\right] / \left[p(\kappa_o -1) - 1\right]$$
Two limits:

i)
$$S_a \sim c(p) N^{\delta}$$
 $(p_c$

ii) $S_a \sim P_\infty N$ $(\widetilde{p}_c$

Results for scaling of S_a

Conclusions

• We define a new percolation model which takes into account the length restriction of useful paths.

• This model is important in real-world applications such as epidemics, data transfer, and transportation.

• We find a new percolation transition at $\tilde{p}_c = (\kappa_0 - 1)^{(1-a)/a} > p_c$ which implies when lengths are constrained, more connections are necessary to percolate. Transition preserves path length scaling.

• We encounter two typical phases: i) power-law with $S_a \sim N^{\delta}$, and ii) a linear phase $S_a \sim N$.

Conclusions

- We define a new percolation model which takes into account the length restriction of useful paths.
- This model is important in real-world applications such as epidemics, data transfer, and transportation.

• We find a new percolation transition at $\tilde{p}_c = (\kappa_0 - 1)^{(1-a)/a} > p_c$ which implies when lengths are constrained, more connections are necessary to percolate. Transition preserves path length scaling.

• We encounter two typical phases: i) power-law with $S_a \sim N^{\delta}$, and ii) a linear phase $S_a \sim N$.

• Few models of percolation exist. Our model is an innovative new approach to percolation with great opportunities for research.

Timeline of percolation theory Tree percolation

Gelation or how the egg hardens: Flory(1941) and Stockmayer(1943). Percolation Flow through a random medium: Broadbent and Hammersley(1957). Directed percolation Steady state chemical reactions: Schlögl (1972). Bootstrap percolation Ferromagnets: Pollak and Reiss (1975). Invasion percolation Displacement of fluid by another: Wilkinson and Willemsen (1983). Limited path percolation Communications and epidemics: López et al. (2007).

Molloy-Reed Algorithm for scale-free Networks Create network with pre-specified degree distribution P(k)

Example:

1) Generate set of nodes with pre-specified degree distribution form $P(k) \sim k^{-\lambda}$

Degree: 2 3 5 2 3 3

2) Make k_i copies of node *i*:

3) Randomly pair copies excluding self-loops and double connections:

4) Connect network:

Theory: Properties of scale-free networks

•Network size with branching factor κ_o :

~ (κ_o -1)^l (λ >3); variable (2< λ <3)

•Branching factor:

$$\kappa_o = \langle k^2 \rangle / \langle k \rangle = \text{cons.} (\lambda > 3); \text{ incres.} (2 < \lambda < 3)$$

•Typical distance *l* between nodes: $l \sim \frac{\log N}{\log (\kappa_o - 1)} (\lambda > 3); \frac{\log \log N}{|\log (\lambda - 2)|} (2 < \lambda < 3)$

•Percolation thresholds:

$$p_c = (\kappa_o - 1)^{-1} (\lambda > 3); 0 (2 < \lambda < 3)$$

•Nodes connected at $p=p_c$: $S \sim N^{(\lambda-3)/(\lambda-1)} (\lambda>3); N(2<\lambda<3)$

•Branching factor at occupation *p*:

$$\kappa - 1 = p(\kappa_o - 1) \text{ for } (\lambda > 3)$$

Summary of theoretical results

Erdös-Rényi $\widetilde{p}_{c} = \langle k \rangle^{(1-a)/a}, \ S_{a} \sim N^{\delta}, \ \delta = a \left(1 + \frac{\log p}{\log \langle k \rangle} \right)$

Scale-free ($\lambda > 3$)

$$\widetilde{p}_{c} = (\kappa_{o} - 1)^{(1-a)/a}, \ S_{a} \sim N^{\delta}, \ \delta = a \left(1 + \frac{\log p}{\log(\kappa_{o} - 1)}\right)$$

Scale-free (2 $<\lambda<3$)

$$\widetilde{p}_c = 0, S_a \sim N$$

Summary of theoretical results

Targeted removal on scale-free networks

$$\widetilde{p}_{c} = \widetilde{p}_{c}(a, \kappa, \kappa_{o}), S_{a} \sim N^{\delta}, \delta = a \frac{\log(\kappa - 1)}{\log(\kappa_{o} - 1)}$$

2<*λ*<3

 $\lambda > 3$

$$\widetilde{p}_{c} = 1, S_{a} \sim (\log N)^{\delta}, \delta = 2a \frac{\log(\kappa - 1)}{\left|\log(\lambda - 2)\right|}$$

Motivation: Where else does percolation fail?

• Communications such as data packet routing:

• Infectious diseases: Flu decays over time/season. Increase of immunity in population. Message route

- Transportation: Long commute times prohibitive. Communication problems
- Other **Reporting extresisensslike path path isoshold**erations. Long paths compound error + reduce performance + security

Motivation: Where else does percolation fail?

• Communications such as data packet routing:

Infectious diseases:
 Flu decays over time/season.
 Increase of immunity in population.
 Message route
 Transportation:

Long commute times prohibitive. require data rerouting

• Other **Reporting extresisenssellife peath path isostside** rations. Long paths compound error + reduce performance + security

Erdős-Rényi Network

Scale-free Network

- New percolation model applied to complex networks
- •Definition of connection: *i* and *j* are connected if $l'_{ij} \le a l_{ij}$ •Notation:
- $S_a(p)$: Largest cluster size at occupation p, length condition a•Is there a critical occupation $p = \tilde{p}_c$ above which $S_a \sim N$? Results: New limited path percolation transition
- •Analytical scaling theory
- •Find new critical occupation $\tilde{p}_c > p_c$
- •Critical point is now a critical range: $S_a \sim N^{\delta}, \delta = \delta(a, p) \left(p_c$
- •Below and above range, behavior is similar to regular percolation:

$$S_a \sim \log N(p < p_c)$$
$$S_a \sim N(p > \widetilde{p}_c)$$

Limited path percolation predicts a larger communication threshold.