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Motivation: How to go from Salem to Boston?

But in Boston,
harsh winter!
Weatherman wrong:
Bigger storm!

Question: How many roads need to be closed before most
people cannot get to work?

On a sunny day
many paths

Answer: from Percolation theory



What is percolation theory?
p i, j distance   S(p): # connected nodes

l’ij>lij due to removal
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Motivation: What’s the problem with percolation?
• Salem-Boston connected 
with any path!

Commute time: 120min

• Long or short paths OK

Commute time: 240min

• There is practical limit
to connectivity ⇔ longer
paths not useful.

Answer: sometimes percolation accepts useless paths.

• Percolation finds critical
percentage pc of  roads needed 
to keep cities connected.
• Percolation increases path
lengths (and time), i.e., smaller
p⇒longer path.

All day driving!Commute time: 60-70minCommute time: 50min

Storm hits



Social contact network



New percolation model applied to complex networks
•Definition of connection: i and j are connected if l’ij ≤ alij

Results: New limited path percolation transition
•Is there a critical occupation              above which Sa~N? cpp ~=

•Notation:
Sa(p): Largest cluster size at occupation p, length condition a

•Find new critical occupation cc pp >~
•Scaling theory

•Critical point is now a critical range:
( )cca ppppaNS ~  ),( ,~ <<=δδδ

•Below and above range, behavior is
similar to regular percolation:
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• Developed in the 1960’s by Erdős and Rényi. (Publications of the 
Mathematical Institute of the Hungarian Academy of Sciences, 1960).

Theory of model networks: Erdős-Rényi

• Define k as the degree (number of links of a node), and ‹k›
is average number of links per node over the network.

a) Complete network
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• Distribution of degree is Poisson-like (exponential)

c) Realization of networkb) Annihilate links 
with probability
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degree of i, ki=2
• N nodes and each pair connected with probability φ.

degree of j, kj=3

node j



Outline of scaling theory for 
Limited Path Percolation
Example: Erdős-Rényi

• Before percolation, typical path length l ~ log N/log <k>

• Tree approx. ⇒ Sa ~ (κ -1)l = (p<k>) a log N/log <k> = Nδ

• Scaling exponent 0 ≤ δ ≡ a(1+log p/log <k>) ≤ 1

• δ ≤1 because Sa cannot exceed N

• Solving δ = 1 ⇒
aa

c kp /)1(~ −= kNa log/log

1+kp

1~ −

∞→ =⎯⎯→⎯ kpp cac• Usual percolation recovered with a→∞:

• After percolation, local structure is tree-like, with 
branching factor 1+= kpκ



Comparison of phase diagram of regular
& Limited Path Percolation (Erdős-Rényi)

Regular percolation Limited path percolation
Communicating

Non-communicating
Limited path percolation predicts a larger communication threshold.
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Results for Sa~Nδ (Erdős-Rényi)
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Complex Networks
Poisson distribution

Erdős-Rényi Network
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Scale-free distribution

Scale-free Network



Some basic network properties
Erdős-Rényi networks Scale-free networks

•Narrow range of typical degree

kkkkk +≤≤−

•Wide range of typical degree

( )1/1
minmin

−≤≤ λNkkk

•Small diameter •Small or ultra-small diameter
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Scaling theory for limited path 
percolation on scale-free networks

• For λ>3:
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Phase Diagram of Limited Path 
Percolation on scale-free networks
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Results for Sa~Nδ

Scale-free
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Targeted attacks on scale-free networks
• Scale-free networks have sensitive nodes (hubs) with large k.

• Examples: Airline hubs, central communication nodes, 
disease super-spreaders.

Model for targeted percolation
• p: fraction of lowest degree nodes present.

• In targeted percolation (no length 
restriction) pc is large:

pc=1 (λ→2)
pc close to 1 (λ>2)

Network falls apart with few node removals.

Question: What happens for limited path percolation?

hub



Scaling theory for limited path targeted
percolation on scale-free networks

• For λ>3:

• For 2<λ<3:
Tree approximation valid again after percolation:
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Any finite a fails to produce transition to linear phase:
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Results for Sa~Nδ

Scale-free targeted removal
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Erdős-Rényi Scale-free (λ>3) Scale-free (2≤λ≤3)

cp~

δ

Sa

aak /)1( − ( ) aa
o

/)1(1 −−κ 0

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

k
pa

log
log1

Quantity

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
)1log(

log1
o

pa
κ

1

Differences in Limited Path Percolation due to 
network structure and removal method at pc ≤p≤ pc

~

Nδ Nδ Nδ

Random removal

Targeted removal
),,(~

oc ap κκcp~

δ

Sa

1

)1log(
)1log(

−
−

o

a
κ
κ

)2log(
)1log(2

−
−

λ
κa

Nδ (log N)δ

-

-

-

Tr
an

sit
ion

Tr
an

sit
ion

No T
ran

sit
ion



Scaling function for Sa
•For Erdös-Rényi, and scale-free λ>3 with random and targeted 
removal, there are two phases above and below cp~

•Therefore:
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Conclusions

• We find a new percolation transition at 
which implies when lengths are constrained, more connections
are necessary to percolate. Transition preserves path length scaling.

( ) c
aa

c pp >−= − /)1(
0 1~ κ

• We define a new percolation model which takes into 
account the length restriction of useful paths.

• We encounter two typical phases: i) power-law with Sa ~ Nδ, 
and ii) a linear phase Sa ~ N.

• This model is important in real-world applications such as
epidemics, data transfer, and transportation.



Conclusions

• We find a new percolation transition at 
which implies when lengths are constrained, more connections
are necessary to percolate. Transition preserves path length scaling.

( ) c
aa

c pp >−= − /)1(
0 1~ κ

• We define a new percolation model which takes into 
account the length restriction of useful paths.

• We encounter two typical phases: i) power-law with Sa ~ Nδ, 
and ii) a linear phase Sa ~ N.

• Few models of percolation exist. Our model is an innovative
new approach to percolation with great opportunities for research.

• This model is important in real-world applications such as
epidemics, data transfer, and transportation.



Phase Diagram of Limited Path Percolation
Scale-free targeted removal
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Timeline of percolation theory

Gelation or how the egg hardens: 
Flory(1941) and Stockmayer(1943).

Flow through a random medium:
Broadbent and Hammersley(1957).

Tree percolation

Directed percolation

Invasion percolation

Limited path percolation

Displacement of fluid by another: 
Wilkinson and Willemsen (1983).

Bootstrap percolation
Ferromagnets:
Pollak  and Reiss (1975).

Percolation

Communications and epidemics:
López et al. (2007).
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Degree: 2   3   5   2    3    3

Molloy-Reed Algorithm for scale-free Networks

λ−kkP ~)(

Create network with pre-specified degree distribution P(k)

1) Generate set of nodes
with pre-specified degree
distribution form

3) Randomly pair copies
excluding self-loops and
double connections:

4) Connect network:

Example:

2) Make ki copies of node i:



Theory: Properties of scale-free networks
•Network size with branching factor κο:

~ (κο-1)l (λ>3); variable (2<λ<3)

•Typical distance l between nodes:

( ) ( ) ( ) ( )32 
2-log
 log log ;3 

1log
log~ <<>

−
λ

λ
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κ
NNl

o

•Branching factor at occupation p:
( ) ( )3for  11 >−=− λκκ op

•Branching factor:
κο=<k2>/<k>=cons. (λ>3); incres. (2<λ<3)

•Percolation thresholds:
pc= (κο-1) -1 (λ>3); 0 (2<λ<3)

•Nodes connected at p=pc:
S ~ N (λ-3)/(λ-1) (λ>3); N (2<λ<3)



Erdös-Rényi
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Summary of theoretical results

Targeted removal on scale-free networks
λ>3
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Motivation: Where else does percolation fail?
• Communications such as data packet routing: 

Rerouting makes sense if new path is short

Internet

Message route

Communication problems
require data rerouting

Long paths compound error + reduce performance + security

• Infectious diseases:
Flu decays over time/season.
Increase of immunity in population.

• Communications such as data packet routing: 
Long paths ineffective.

• Transportation:
Long commute times prohibitive. 

• Other important extensions like path cost considerations.
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Phase Diagram of Limited Path 
Percolation Scale-free
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Comparison of phase diagram of regular
&Limited Path Percolation (Erdős-Rényi)
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Theory: Erdős-Rényi network properties
•Nodes connected with branching factor κο:

1 + κο + κο(κο-1) + κο(κο-1)2 ~ (κο-1)l

•Typical distance l between nodes:
( ) kNNl o log/log1log/log~ =−κ

•Branching factor:
κο=<k2>/<k>=<k>+1

•Percolation threshold:
pc=<k>-1

•Nodes connected at p=pc:
S ~ N2/3

l shells

•Degree distribution:

κο: typ. # links/node

•Typical length at p=pc:
l ~ N1/3



New percolation model applied to complex networks
•Definition of connection: i and j are connected if l’ij ≤ alij

Results: New limited path percolation transition
•Is there a critical occupation              above which Sa~N? cpp ~=

•Notation:
Sa(p): Largest cluster size at occupation p, length condition a

•Find new critical occupation cc pp >~
•Analytical scaling theory

•Critical point is now a critical range:
( )cca ppppaNS ~  ),( ,~ <<=δδδ

•Below and above range, behavior is
similar to regular percolation:
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What is percolation theory?
p i, j distance   S(p): # connected nodes

l’ij>lij due to removal

i

j
lij

l’ij
=pc l’’ij> l’ij Ndf/d

=1 lij N
<1 l’ij P∞N

<pc most disconnec.      log N
p: occupied fraction of links
P∞: probability of random
node to be in largest cluster
pc: connectivity threshold
df: fractal dim., d dim.Transition:

disconnected

connected

Theory to determine connectivity in systems
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Comparison of phase diagram of regular
& Limited Path Percolation (Erdős-Rényi)

Regular percolation Limited path percolation
Communicating

Non-communicating
Limited path percolation predicts a larger communication threshold.
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