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Motivation: How to go from Salem to Boston?
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Quest1on How many roads need to be closed before most
people cannot get to work?Answer: from Percolation theory



What 1s percolation theory?
Theory to determine connectivity in systems
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Motivation: What’s the problem with percolation?
ey Salem-Boston connected

Hauerhl [

Stonﬁgaltsmg _m;m o with any path!
' 5 @ - ¢ Long or short paths OK

' f’" ..~ e« Percolation finds critical

i percentage p. of roads needed
to keep cities connected.
 Percolation increases path
lengths (and time), 1.¢., smaller

*| p=longer path.
# « o There is practical limit
to connectivity < longer

paths not useful.
Commute time: 8867Hmin All day driving!

Answer: sometimes percolation accepts useless paths.
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Social contact network



New percolation model applied to complex networks

*Detinition of connection: i and j are connected 1f /”; <al;

*Notation:
S (p): Largest cluster size at occupation p, length condition a

s there a critical occupation p = p_.above which § ~N?

Results: New limited path percolation transition

*Scaling theory
*Find new critical occupation p. > p,

., CoL .. 1
*Critical point 1s now a critical range:
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Theory of model networks: Erdos-Reny1 .

¢ DeVelOped in the 1960°s by Erdos and Rényl (Publications of the

Mathematical Institute of the Hungarian Academy of Sciences, 1960).
* N nodes and each pair connected with probability ¢.

degree of i, k=2
» Define k as the degree (number of links of a node), and <>

is average number®driks per node over the network.

Construction degree of j, k=3

a) Complete network b) Annihilate links = ¢) Realization of network

with probability©9¢./
1-¢
Y A
{f’ﬁ "N
k
1y (k)

* Distribution of degree 1s Poisson-like (exponential) P(k)=e e




Outline of scaling theory for .
Limited Path Percolation
Example: Erdos-Rényi
» Before percolation, typical path length / ~ log N/log <k>

 After percolation, local structure is tree-like, with
branching factor k = p <k > + 1

 Tree approx = S ~(k-1) = (p<k>) alogNlog <k> = No

. Sca]cng e)@%onentd) < o=a(l+log p/log <k>)<1

e <1 be cannot exceed N
© . (1-a)/a
e Solving 05 1'=> lngQk 3

-1
- Usual percolatlon recovered with a—0: P, —D. =<k>
O
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Comparison of phase diagram of regular .

& Limited Path Percolation (Erdos-Reényi)
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Limited path percolation predicts a larger communication threshold.



4 .. gular Percolation

%
X
~
Slope d./d .
ogarithmic
/Lg#
) Log N
N  (p>p.)
S~< N (p=p.)
logN (p<p.)
p.= (k)"

10°

10°
10°
@
S~{ N°
log N
5 :<k>(1 a)/a
O =a log<pk>/log< >

Results for S ~N°(Erdés-Rényi)

Limited path percolation &

 (a) ER <k>=3.0 (random)
- Oa=1.0
. 1.1
- O12
AN 1.4
<11.7




Complex Networks

Poisson distribution

P(k)
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Some basic network properties

Erd0s-Rény1 networks Scale-free networks
*Narrow range of typical degree *Wide range of typical degree
(k)= (k) <k <(k)+ (k) ki Sk <k NVOTH

(k.. 1s minimum degree)
*Small diameter *Small or ultra-small diameter
D~InN D~In(ln N)[2 < A < 3]

D~InN[A>3]



Scaling

percolation on scale-free networks

e For />3:

theory for limited path

S~ Na[l+log p/llog (k,-1)]

.= (e, —1)""

* For 2<A<3:
Tree ap

[ ~log.

oroximation invalid. Networks are ultra-small:

og N/‘log(}t —2)

['~log]

ogP N / ‘log(ﬂ — 2)‘

Therefore:

a

_I' loglog PN

> 1
[ loglog N Now




Phase Diagram of Limited Path

Percolation on scale-free networks
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Results for S ~N?
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Targeted attacks on scale-free networks s

 Scale-free networks have sensitive nodes (hubs) with largg k.

* Examples: Airline hubs, central communication nodes,
disease super-spreaders.

Model for targeted percolation

e p: fraction of lowest degree nodes present.

* In targeted percolation (no length
restriction) p . 1s large:
hub p.=1 (1—>2)
p. close to 1 (1>2)
Network falls apart with few node removals

Question: What happens for limited path percolation?



Scaling theory for limited path targeted i
percolation on scale-free networks %

. F0r§> 3; N alog(x—1)/log(x, 1)

Z?Jc — fﬁc(aﬂK9K0)
e For 2<A<3;:

Tree approximation valid again after percolation:

S _ (l()g N)Zalog(/c—l)/‘log(/l—2)‘

a

Any finite a fails to produce transition to linear phase:

p. =1



Phase Diagram of Limited Path
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Results for S ~N?

Scale-free targeted removal
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Differences in Limited Path Percolation due to
network structure and removal method at p. <p<p.
Random removal

Quantity Erdds-Rény1 Scale- le-free (2<AL3)
NC k l—a)/a K _;1 (1-a)/a 0
oo s e 0

&“log (k) 4(r, —1)
S
S, ) NS
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Scaling function for §,

*For Erdos-Rény1, and scale-free A>3 with random and targeted
removal, there are two phases above and below P,

(

*Therefore:
PN x, x<<l

S ~ N° ~
. ~c(p) f(c(p)N5j f(x)~3
C(p) = CO [p (Ko -1)+1]/[p(Ko -1) _1]

Two limits:

S ~ c(p)N’ (p.<pP<p,)
S, ~P.N  (5.<p<l)

cnst., x >>1



Results for scahng of §,
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Conclusions

* We define a new percolation model which takes into
account the length restriction of useful paths.

 This model 1s important in real-world applications such as
epidemics, data transfer, and transportation.

. - ~ (1-a)/a
 We find a new percolation transition at p, = (Ko — 1) >p
which implies when lengths are constrained, more connections

are necessary to percolate. Transition preserves path length scaling.

c

« We encounter two typical phases: i) power-law with S~ N¢,
and 11) a linear phase S, ~ V.



Conclusions

* We define a new percolation model which takes into
account the length restriction of useful paths.

 This model 1s important in real-world applications such as
epidemics, data transfer, and transportation.

« We find a new percolation transition at p. = (Ko — 1)(1_“) s p.
which implies when lengths are constrained, more connections

are necessary to percolate. Transition preserves path length scaling.

« We encounter two typical phases: i) power-law with S~ N¢,
and 11) a linear phase S, ~ V.

» Few models of percolation exist. Our model 1s an innovative
new approach to percolation with great opportunities for research.



Phase Diagram of Limited Path Percolation
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Tree percolation

Gelation or how the egg hardens:
Flory(1941) and Stockmayer(1943).

Percolation
Flow through a random medium:
Broadbent and Hammersley(1957).

Directed percolation
Steady state chemical reactions:

Schlbgl (1972).

Bootstrap percolation
Ferromagnets:

Pollak and Reiss (1975).
Invasion percolation
Displacement of fluid by another:

Wilkinson and Willemsen (1983).

Limited path percolation
Communications and epidemics:

Lopez et al. (2007).



Molloy-Reed Algorithm for scale-free Networks
Create network with pre-specified degree distribution P(k)

Example:
1) Generate set of nodes 3) Randomly pair copies
with pre-specified degree excluding selt-loops and

distribution form P(k) ~k™*  double connections:

Degree: 2 3 5 2 3 3 o0 oo T
o0
2) Make k; copies of node i: 4) Connect network:
®0
oo00
o000 o0
0



Theory: Properties of scale-free networks

*Network size with branching factor x;
~ (k,-1) (A>3); variable (2<4<3)

*Branching factor:
K =<k’>/<k>=cons. (4>3); incres. (2<A<3)
*Typical distance / between nodes:
l log N (/1>3); log log N

- log(x, —1) log(/l-2){
*Percolation thresholds:

p.= (k1)1 (1>3); 0 (2<A<3)

*Nodes connected at p=p.,:
S ~ N EAED (Q>3); N (2<1<3)

*Branching factor at occupation p:

k—1=p(x, —1)for (1 >3)

(2< A4 <3)




Summary of theoretical results

Erdos-Rényi

~ _ k (I-a)/a NG _ 1 logp
D. < > , S ~N°, o a[ +10g<k>

Scale-free (A>3)

p.=(k, 1), 8, ~N°, 5= a(1+ log 1 ]
log (x, 1)

Scale-free (2<A<3)

p.=0,S ~N



Summary of theoretical results

Targeted removal on scale-free networks
A>3

-~ ] —1
pc=pc(a,K,K0),Sa~N5,§=a Og(K )
log(x, —1)
2<A<3
log(x —1)

p.=1,S ~(log N)°,5 =2a

‘log(/l — 2)‘



Motivation: Where else does percolation fail?

« Communications such as data packet routing:
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Long paths compound error + reduce performance + security



Motivation: Where else does percolation fail?

 Communications such as data packet routing:

--\-ﬁ:%]_,,l)lih@liﬁﬁhs ineffective.

opulation.
>4 Message route

 Transportation: 5

C ot bl
Long commute times pr ohibitive ommunication problems

réquire data rerouting

 Other Rapmrtard exdkasisessbh k€ peh patdt sosisederations.

Long paths compound error + reduce performance + security



Complex Networks

Poisson distribution

P(k)
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Complex Networks

Poisson distribution

P(k)
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Complex Networks
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Comparison of phase diagram of regular .
&Limited Path Percolation (Erdos-Rényi)

Regular percolation Limited path percolation

1 Epidemic ' \
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S S |
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_____ EIﬁ_Ct_&l llLlQ N <i> -1 O _ |Fractal phase ( d<1)
. . & 3 .
Lo garlthmlc phase Logarithmic Phase
pud
0 1 oo
Length factor a

No epidemic
Limited path percolation predicts a larger epidemic threshold.



4 = Theory: Erdds-Rényi network properties .

*Nodes connected with branching factor
1 +x, + k(K1) + K (k1) ~(x,-1)

*Branching factor:

K0:<k2>/<k>:<k>_|_1 [ shells

«
K, typ. # links/node
*Typical distance / between nodes:

[~logN/ log(KO — 1) =log N/ 10g<k>

*Percolation threshold: *Degree distribution:
p=<k>" S
*Nodes connected at p=p.: ~
S~ N3 ol

*Typical length at p=p_:
| ~ N1/3




New percolation model applied to complex networks

*Detinition of connection: i and j are connected 1f /”; <al;
*Notation:
S (p): Largest cluster size at occupation p, length condition a

s there a critical occupation p = p_.above which § ~N?

Results: New limited path percolation transition

*Analytical scaling theory
*Find new critical occupation p. > p,
*Critical point 1s now a critical range:

S,~N°,6=8(a,p) (p.<p<P.)
*Below and above range, behavior is |

similar to regular percolation:
S, ~logN(p<p,) ;
S,~N(p>p.)

1

Logarithmic




What 1s percolation theory?
Theory to determine connectivity in systems

p 1i,jdistance S(p). # connected nodeso

=] L N
<] I P_N
l’ij>ly. due to removal
=p.. >0 Ndjd

<p. most disconnec. log N

occupied fraction of links

p:
1 N
P : probability of randg
nodg to be in largess €luster
p.: Sonnectivityldteeshold

Transition: ! g# factal dim., 4 dim.
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Comparison of phase diagram of regular .
& Limited Path Percolation (Erdos-Renyi)

Regular percolation Limited path percolation
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Limited path percolation predicts a larger communication threshold.
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